

Overview

Goal:

To convert the image classifiers into object detectors on weakly annotated categories (without bounding box annotations), by transferring knowledge from visually or/and semantically similar categories.

LSDA Background

A: Weakly annotated categories (image labels) **B**: Fully annotated categories (bounding boxes)

- Pre-train an 8-layer CNN on ImageNet;
- 2. Fine-tune for classification on A+B;
- 3. Fine-tune for detection on B in R-CNN [2] manner (category-*invariant* adaptation, layer 1-7);
- Category-specific adaptation on A (layer 8). Assumption: CLS and DET difference on a target category has a positive correlation with those of similar categories.

$$\forall j \in \mathcal{A} : \overrightarrow{w_j^d} = \overrightarrow{w_j^c} + \frac{1}{k} \sum_{i=1}^k \Delta_{\mathcal{B}}$$

w: fc8 weight, Δ : fc8 weight change from CLS to DET of the neighbor category.

Neighbor definition: L2 distance between w_i^c and w_i^c .

Similarity-based Knowledge Transfer Model

Motivation:

Visual similarity between two categories: $s_v(j,i) \propto \frac{1}{N} \sum_{n=1}^{N} CNN(I_n)_i$ on a balanced CLS validation set.

Each category is a WordNet synset. 300-dimension vector using word2vec embedding + synset embedding.

Semantic similarity (2 measures):

2. Coefficient of linear combination of vectors (sparse representation \leq 20).

Large Scale Semi-supervised Object Detection using Visual and Semantic Knowledge Transfer

Yuxing Tang¹, Josiah Wang², Boyang Gao^{1,3}, Emmanuel Dellandrea¹, Robert Gaizauskas², Liming Chen¹ 1. Ecole Centrale de Lyon, France 2. The University of Sheffield, UK 3. Istituto Italiano di Tecnologia, Italy

1. Category-specific difference exists between classifier and detector; 2. Visually and semantically similar categories may exhibit more common transferable properties than dissimilar categories; 3. Visual similarity and semantic relatedness are shown to be correlated, especially when measured against objects cropped out from images (thus discarding background clutter).

Visual similarity measure s_v

Semantic similarity measure s_s

1. Inversely proportional to L2 distance of two feature vectors;

Mixture transfer model

 $s = intersect[\alpha s_v + (1 - \alpha)s_{s:sparse}]$

Conclusion

- We investigated how knowledge about object similarities from both visual and semantic domains can be transferred to adapt an image classifier to an object detector.
- Both visual and semantic similarities play an essential role in improving the adaptation process, and the combination of the two modalities yielded better performance.

References

[1] J. Hoffman et al. LSDA: Large scale detection through adaptation. *NIPS* 2014 [2] R. Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014

IEEE 2016 Conference on **Computer Vision and Pattern** Recognition

CVPR2016

https://liris.cnrs.fr/~ytang/