Unraveling the Contribution of Image Captioning and Neural Machine Translation for Multimodal Machine Translation

Chiraag Lala, Pranava Madhyastha, Josiah Wang, Lucia Specia University of Sheffield

{clala1, p.madhyastha, j.k.wang, l.specia}@sheffield.ac.uk

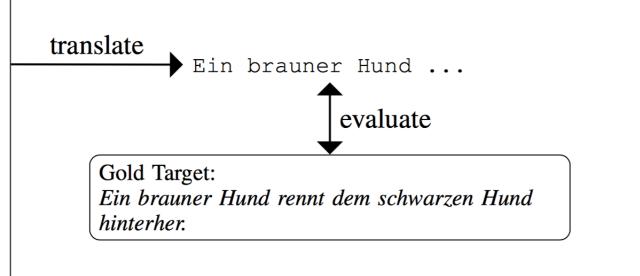
Task

We study the *Multimodal Machine Translation* (MMT) task: given a description in a source language and its corresponding image, translate it into a target language.

Neural machine translation performs:

- best when trained on the in-domain parallel Task1 data
- sufficiently well when trained on the out-of-domain parallel News corpus • very poorly when trained on the remaining comparable data settings

Image Captioning models



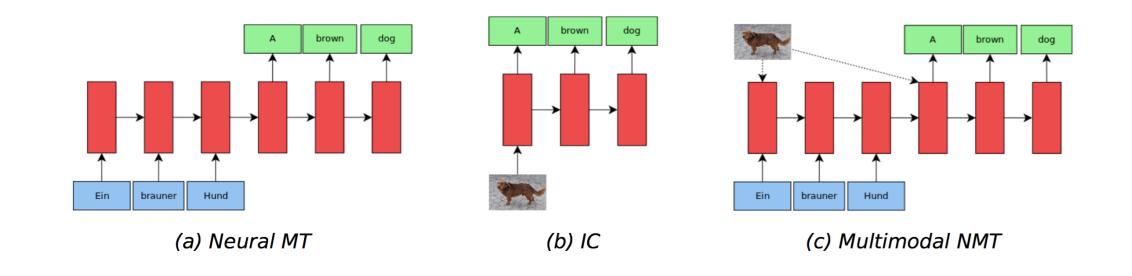
Source: A brown dog is running after the black dog.

Our Contributions

• We isolate two distinct but related components of MMT and analyse their individual contributions:

- -NMT: Machine translation (Neural MT: Nematus [2]) text-only, bilingual
- -IC: Image caption generation (Multimodal RNN: Show and Tell [4]) multimodal, monolingual

• We propose a method to combine the output of both components to improve MMT



Exper	imental	Settings
—		U

Data	Setting	$\mathbb{V}_A\uparrow$	$\mathbb{V}_B\uparrow$	$\mathbb{V}_C \uparrow$	$\mathbb{V}_D\uparrow$	BLEU ↑	Meteor \uparrow	len. (%)
MSCOCO	Out Of Domain	12.08	16.45	20.68	11.16	3.11	9.56	78.45
Task1	Parallel	11.38	14.19	24.76	6.35	3.91	9.75	86.37
Task2	Comparable	17.70	26.29	30.04	8.46	5.79	12.31	75.55

Image captioning performs:

• **best** when trained on the in-domain Task2 data which has 5 descriptions per image

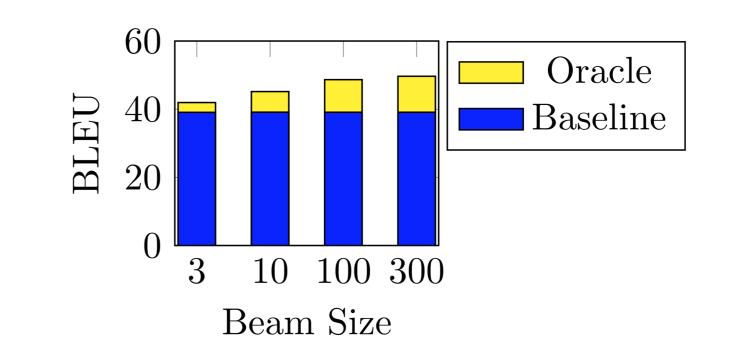
• **poorly** when trained on other data settings

Combining NMT and IC for MMT

Main idea: re-rank *n*-best outputs of NMT models using *m*-best outputs from IC models.

Scope of Re-ranking: Oracle Experiment

NMT model trained on Task 1 data and IC model trained on Task 2 data.



Re-ranking NMT using IC word probabilities

Dataset

Dataset for the WMT16 MMT task [3] is used. Two variants:

• Task 1: 1 English description + 1 professionally translated German description per image

• Task 2: 5 English descriptions + 5 independently crowdsourced German descriptions per image We concentrate on translating German descriptions to English (DE–EN direction).

Training data

- Parallel: Task 1 corpus. 1 (DE, EN) description pair per image. DE is a direct translation of the EN description.
- Comparable: Task 2 corpus. 5 (DE, EN) description pairs per image. DE is not a direct translation of EN (independently crowdsourced).
- Out of Domain: Larger corpus.
- NMT: News, etc. [2]
- IC: MS COCO [1]
- Cross-comparable (NMT only): Task 2 corpus. Each 5 DE descriptions is paired with each 5 EN descriptions (25 pairs).

Test data

• WMT16 MMT Task 1 test data (1,000 samples)

Analysis

Analysis is performed on NMT and IC models using **BLEU**, **Meteor** and four types of **Vocabulary Overlap**:

Re-rank the *n*-best NMT translations using word probabilities in the *m*-best IC outputs.

 $p_{new}(w) = (1 - \alpha) * p_{nmt}(w) + \alpha * p_{ic}(w)$

where $p_{new}(w)$ is the new word score, $p_{nmt}(w)$ is the word probability from the NMT system, $p_{ic}(w)$ is the *aggregated* word probability from the IC system, by averaging over all occurrences of w in *m*-best IC outputs (AVERAGE). α is tuned on the validation set using grid search.

AVERAGE	Baseline	Either	Judge
18	15	17	А
26	19	5	В
19	9	22	С
20	11	19	D
14	9	27	E
97(39%)	63 (25%)	90 (36%)	Total

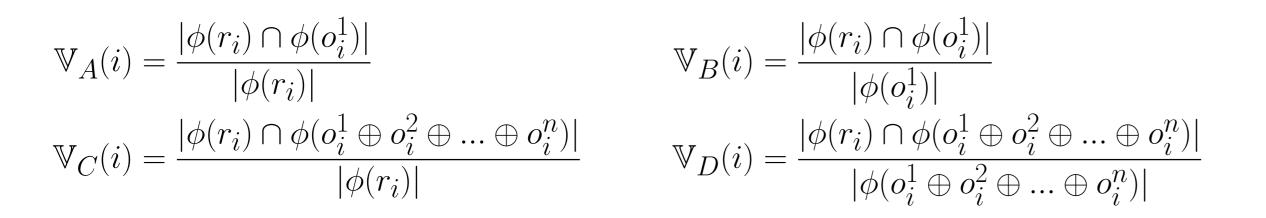
- AVERAGE (39.43 BLEU) outperforms text-only NMT baseline (39.13 BLEU)
- Human evaluation: all judges preferred AVERAGE over baseline

- a dog treads through a shallow area of water located on a rocky mountainside. Reference
 - a dog walks through a body of water, with a body of water in it.
- **AVERAGE** a dog walks through a body of water, looking at a rocky mountain.

IC gave high word probability scores to *rocky* (0.42) and *mountain* (0.28) compared to *body* (0.00)and *water* (0.00).

Conclusions

- Combining NMT and IC outputs improves MMT performance over NMT system: We confirm that image information definitely has potential to improve MT
- Future work: Better system combinations/joint models exploiting NMT and IC word probabilities



where ϕ is the set function, \oplus the concatenation operator, \cap the intersection operator, |.| the cardinality, n the beam size, i the test input, o_i^n the n-th best hypothesis for i, r_i the reference.

Neural MT models

Data	Setting	$\mathbb{V}_A\uparrow$	$\mathbb{V}_B\uparrow$	$\mathbb{V}_C\uparrow$	$\mathbb{V}_D\uparrow$	BLEU↑	Meteor \uparrow	len. (%)
News	Out Of Domain	61.24	63.41	69.83	37.47	33.89	36.85	96.98
Task1	Parallel	66.11	68.27	73.02	36.88	39.13	36.87	100.54
Cross	Cross-comparable	26.22	44.23	34.91	19.76	6.92	14.62	63.06
Task2	Comparable	21.30	15.44	33.45	6.79	3.08	12.83	158.07

Acknowledgements

This work was supported by the MultiMT project (H2020 ERC Starting Grant No. 678017).

References

- [1] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Conference on Computer Vision, pages 740–755. Springer, 2014.
- [2] Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine translation systems for wmt 16. In First Conference on Machine Translation, pages 371–376, 2016.
- [3] Lucia Specia, Stella Frank, Khalil Sima'an, and Desmond Elliott. A shared task on multimodal machine translation and crosslingual image description. In First Conference on Machine Translation, pages 543-553, 2016.
- [4] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption generator. In IEEE Conference on Computer Vision & Pattern Recognition, 2015.