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Image features

@® \We address the prediction of a preposition linking two entities
(trajector and landmark), detected in an image.

@® Two cases considered: with known entity labels, and when they
are determined jointly with the preposition.

Approach

@® Textual, visual and geometric features are evaluated to predict
the preposition with a linear classifier (observed entity labels)
and with a chain CRF (hidden entity labels).

Contributions
@® The three feature types can contribute to the prediction task.

® Text embeddings add robustness against label sparsity.

Under

Datasets

@® For evaluation, we used two large-scale image datasets with
human authored descriptions: MSCOCO [1] and Flickr30k [2].

@® Prepositional relations relevant to the image are detected
using Stanford CoreNLP, and cleaned manually.

@® To avoid data sparseness in Flickr30k we extract the lem-
matised head word of the original phrase using the Collins
(2003) semantic head finding rules in Stanford CoreNLP.

@® \We consider two variants of trajector and landmark terms in
our experiments:

O Using the provided high-level categories (80 for MSCOCO
and 8 for Flickr8k).

O Using the original terms occuring in the sentence, which
constitute a bigger and more realistic challenge.

@® Dataset Sizes:
MSCOCQO: 8,029 training and 3,431 testing instances.
Flickr30k: 46,847 training and 20,010 testing instances.

Evaluation

@® Multiple prepositions may be suitable for a trajector-landmark
pair, hence we propose to use mean rank as evaluation
metric, but we also report accuracy for comparison purposes.

@® As a baseline, we rank the prepositions by their relative fre-
guency Iin the training set, which gives surprisingly good results.
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* Vector connecting T and L centers normalized by E

v/ max(enclosing box height, width)
* Area of trajector bounding box relative to landmark
(T height x T width) / (L height x L width)
* Aspect ratio of each bounding box
(T width / T height) ; (L width / L height)
* Area of each bounding box w.r.t. enclosing box
(<T,L> height x <T,L> width) / (E height x E width)
* Intersection over union of the bounding boxes
1/ { (T height x T width)+(L height x L width) - 1 }
* Distance between T and L, normed by picture size
[V|2 / max(picture height, width)
* Area of each bounding box w.r.t. the whole image
(<T,L> height x <T,L> width) / (P height x P width)
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Top: Mean rank of the correct preposition (lower is better). Bottom: Accuracy
with different feature configurations. All results are with the original trajector/
landmark terms from descriptions. IND stands for Indicator Vectors, W2V for
Word2Vec, and GF for Geometric Features.

IND W2V GF IND+GF W2V+GF Baseline
<4  MSCOCO (max rank 17) 145 143 172 1 44 1.42 2.14
= MSCOCO (balanced) 320  3.10  4.60 3.00 2.90 5.40
S Flickr30k (max rank 52) 191 187 2235 1.88 1.85 2.54
2 Flickr30k (balanced) 11.10 9.04 15.55 10.23 8.90 15.13
> MSCOCO 797% 803% 684%  79.8% 80.4%  40.2%
£ MSCOCO (balanced) 525% 542% 31.5%  52.7% 53.9%  11.9%
S Flickr30k 754% 752% 585%  75.8% 75.4%  53.7%
< Flickr30k (balanced) 24.6% 259% 9.0%  25.2% 26.9% 4.0%

Accuracy (acc) and mean rank (rank, with max rank in parenthesis) for each
variable of the CRF model, trained using the high-level concept labels.
Columns under Prep (known labels) refer to the results of predicting prepo-
sitions with the trajector and landmark labels fixed to the correct values.

| Prep (known labels) Preposition Trajector Landmark e

Dataset
acc rank acc rank acc rank acc rank undemeath
MSCOCO 79.8% 146 (17) 629% 1.92(17) 65.6% 4.64(74) 445% 7.30(77) L
Flickr30k  67.1% 2.16 (52) 61.7% 2.28(52) 773% 143(8) 664% 1.64(8) between

Chain CRF (predicting preposition and objects)
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