Don't Mention the Shoe! A Learning to Rank Approach to **Content Selection for Image Description Generation**

Josiah Wang & Robert Gaizauskas

Department of Computer Science, University of Sheffield, UK

Task

Select the bounding box instance(s) most likely to be mentioned by humans in the corresponding image description

[Learn from annotated human descriptions]

There is a **woman**^[1] sitting on the floor. A lady^[1] sitting in the street with a **snake^[0]** in a **basket^[11]**. A old Indian lady^[1] is displaying a black **snake^[0]** and other items . An Indian lady^[1] with a snake^[0]. A woman^[1] in a red **dress^[5]** sitting in the street . A woman^[1] in brightly colored **clothing^[5]** is sitting with a **snake^[0]** in a **basket^[11]**.

Features

Rank objects based on features or feature combinations

Different rankers:

- cascent: **Coordinate Ascent** (listwise)
- svmrank: **Ranking SVM** (pairwise)
- rforest: **Random Forests**

Stopping Criteria

fixed: retain top 3 objects absolute: retain objects with score > 0.5

relative1: retain objects before largest difference in score

[1] woman [5] dress [0] snake [11] basket [10] nedkace [13] scart [4] shoe [9] hand

relative2: retain objects before largest difference in score + the object immediately after

image embedding

....

Image region

VGG-16 FC7 (4096D)

ctures India

Concept label

distance from

image centre

Bounding box

box

÷ image

area relative to

image

word2vec + AutoExtend

....

(pointwise)

Results

Results of concatenating all features (please refer to paper for other results):

	Stopping Criterion	Precision	Recall	F ₁ -score
cascent	fixed (top 3)	0.59 ± 0.22	0.56 ± 0.23	0.55 ± 0.20
	fixed (top 4)	0.50 ± 0.20	0.63 ± 0.22	0.54 ± 0.17
	absolute	0.42 ± 0.22	0.72 ± 0.22	0.49 ± 0.17
	relative1	0.72 ± 0.33	0.57 ± 0.29	0.53 ± 0.22
	relative2	0.56 ± 0.25	0.66 ± 0.26	0.54 ± 0.20
svmrank	fixed (top 3)	0.60 ± 0.20	0.59 ± 0.22	0.57 ± 0.18
	fixed (top 4)	0.53 ± 0.18	0.68 ± 0.21	0.58 ± 0.16
	absolute	0.43 ± 0.20	0.80 ± 0.19	0.52 ± 0.15
	relative1	0.67 ± 0.31	0.61 ± 0.29	0.53 ± 0.19
	relative2	0.55 ± 0.25	0.70 ± 0.25	0.55 ± 0.18
	fixed (top 3)	0.69 ± 0.18	0.68 ± 0.21	0.66 ± 0.16

Discussion

- Random forests ranker performs best (new state-of-the-art)
 - Surprising: Random forests (pointwise) assumes bounding boxes are independent
 - Ranking SVM and Coordinate Ascent consider other bounding boxes as context
 - Perhaps random forests is a strong classifier?
- Stopping criteria:
 - **absolute**: depends on ranking algorithm
 - relative1 precision > relative2 precision
 - **relative2** recall > **relative1** precision
- Features:
 - Concept label features are more salient than bounding box or image features
 - Text (synset) embedding > one-hot vectors

st	fixed (top 4)	0.60 ± 0.17	0.76 ± 0.19	0.65 ± 0.14	
rfore	absolute	0.84 ± 0.19	0.64 ± 0.21	<u>0.70 ± 0.16</u>	
	relative1	0.89 ± 0.18	0.57 ± 0.23	0.66 ± 0.18	
	relative2	0.71 ± 0.18	0.69 ± 0.21	0.68 ± 0.17	
Human		0.77 ± 0.11	0.77 ± 0.11	0.74 ± 0.12	

• Bounding box size > bounding box distance from centre

 Image embedding + bounding box size slightly better than image embedding alone

Future Work

• Stronger features

• Automatically gather larger noisy datasets: reduce annotation

Acknowledgements

Supported by the **C** chist-era Visual Sense (ViSen) project (EPSRC EP/K019082/1).